autobuild-lessons
Release beta

Sep 03, 2019

Contents:

1 EDS-Lessons Final Build Documentation 1
1.1 Future ToDo List e e e e e e e 1
2 EDS-Lessons Final Build Documentation 3
2.1 DITECOTIES . . . v v o o e 3
2.2 CircleCIPipeline o e e e e e e e e e e 4
2.3 Scripts and Utilities (SCripts)« o v i v i e e e e e e e e 7
2.4 Rebuilding Notebooks e 11
2.5 Rebuilding specific course directorieso e e 13
2.6 Build Secrets e e e e e e e e e e 14
2.7 Building Blog Posts L e e e e e 16
2.8 Authenticating SSH L e 17
2.9 CIiff Notes — force rebuild specifical directories 17
3 Future To Do List 19
4 Indices and tables 21

CHAPTER 1

EDS-Lessons Final Build Documentation

1.1 Future To Do List

¢ Cleanup the knit lessons script

» Twitter lesson timeout issue

* Might be uneeded scripts in the repo —
— rmd —> notebook script
— cleanup deprecated folder

* Add docstrings to functions

autobuild-lessons, Release beta

2 Chapter 1. EDS-Lessons Final Build Documentation

CHAPTER 2

EDS-Lessons Final Build Documentation

The EDS lessons build has several high level steps.

1. Original lessons are stored in the earth-analytics-lessons repo. This is where you will find .ipynb, .rmd and
image files that are manually added to lessons. When a lesson is updated or an image is added to the repo, it
triggers a build that produces a markdown file for the lesson and moves any related images.

2. Once lessons are built, they are moved to the eds-lessons-website directory. This is where the final versions of
the .md files and associated images (both manually added and autobuild created) live.

3. The last step is temporary. Bceause the live website currently lives on earthlab.github.io, we will need to push
files commited to the master branch of the eds-lessons repo to the live website. a smaller CI build is in place to
move commits to master from eds-lessons-website.

2.1 Directories

2.1.1 Earth Analytics Lessons (earth-analytics-lessons)
This is where the source lesson files (referred to throughout as “notebooks”) for the website posts (courses, workshops,
tutorials, blog) live. These include:

* R posts: RMarkdown notebooks (. rmd)

* Python posts: Jupyter notebooks (. ipynb)

* Images associated with posts (in images directory). IMPORTANT: images in this directory that are manually
added are stored here. images associated with building a notebook. are created in the CI build and pushed so
they never exist in this repo.

This repo also contains the YAML file for CircleCI builds and scripts for generating posts and logging changes/errors
when updates to post content are made.

autobuild-lessons, Release beta

2.1.2 Earth Data Science Website (eds-lessons-website)

This is where the posts output by earth-analytics-lessons in .md format are
stored. They are pushed to a branch on the remote with the same name as the one in
eds—-lessons-website/earth-analytics-lessons containing changes made to website content.

2.1.3 Earth Analytics (earth-analytics)

The earth-analytics directory is the data directory that is required for most earth analytics course builds. For that
reason, lessons for the Earth Analytics courses are rendered from this directory (this is the working directory for the
builds). It stores data required for each lesson, simulating the course folder an Earth Analytics student would have on
a personal machine. The earth-analytics directory is created only while notebooks are rendered in the CircleClI build.

2.2 CircleCl Pipeline

2.2.1 Workflows
One-time Builds (build)

This workflow is run whenever changes to post content are pushed to earth-analytics-lessons.
1. Check conda environment
« Lists all packages (R, Python, and Linux) installed in the conda environment and package versions.
2. Get latest lesson commit
* Working directory: ~/earth-analytics-lessons
* Fetches any changes from the remote earth-analytics-lessons repo using git diff

e Stores these changes in a temporary log file (changed_files.txt) using scripts/
parse_commit.py. This is read to generate posts whenever changes are pushed to individual note-
books.

* Storing information this way in temp log files allows us to read it in for use in later build steps.
3. Get current branch
* Working directory ~/earth-analytics-lessons

* Grabs the name of the branch that triggered the CircleCI build and stores it in a temporary log file
(current_branch.txt).

4. Fetch most recent commit message
* Working directory ~/earth-analytics-lessons

* Grabs the message from the commit that triggered the CircleCI build and stores it in a temporary log file
(commit_msg_latest.txt).

5. Display modified Jupyter notebooks (.ipynb files)

* Working directory: earth-analytics-lessons

* Reads in and displays any changed Python notebooks (. ipynb) from changed_notebooks. txt.
6. Display modified . Rmd files

* Working directory: ~/earth-analytics-lessons

4 Chapter 2. EDS-Lessons Final Build Documentation

autobuild-lessons, Release beta

* From changed_notebooks.txt, reads in and displays any changed RMarkdown notebooks (. rmd)
7. Display modified images
* Any images that are manually added to the website will be displayed during this step.

» This step will normally do nothing, since images are in most cases generated DURING the notebook
rebuilds. Images for notebooks should not be pushed directly to ~/earth-analytics—-lessons, ex-
cept in special cases when updating objects meant to remain permanently on the build, i.e. headers/footers
for blog posts and static images for lessons.

8. Clone eds-lessons-website
* Working directory: root
* This step clones the eds—-lessons—-website repo locally

e If the earth-analytics-lessons branch that triggered the CircleClI build is something other than
master, this step will git checkout a new branch for eds—-lessons—-website that matches the
one for earth—-analytics—-lessons.

9. Delete removed/renamed/moved images from website

e In this step, any images that are manually removed, renamed, or moved in a commit
to ~/earth-analytics-lessons are also removed in the matching directory on ~/
eds-lessons—website/images/....

¢ This should only be done to images that are added to the build manually (i.e., for blog posts). Images that
are generated by notebooks are handled separately (see Delete removed/renamed/moved posts
from website).

10. Delete removed/renamed/moved posts from website

¢ In this step, the post (.md) named for any notebooks (.rmd, .ipynb) that were manually removed,
renamed, or moved in a commit to ~/earth-analytics-lessons is removed from the matching
directory on ~/eds-lessons-website/_posts/....

* Any images associated with the post are also deleted.

— These images are stored in a subdirectory of the directory where the source . rmd or . ipynb note-
book lives.

— When the notebook is rebuilt, these images are pushed over to the matching directory on ~/
eds-lessons-website/images/. ...

— During this step, the subdirectory on ~/eds-lessons-website/images/ . . . is deleted along
with the post.

x (There is no need to remove the images in this way on ~/earth—-analytics—lessons be-
cause they are never permanent. They are only ever generated as intermediate outputs when the
notebook builds, then immediately pushed over to ~/eds—-1lessons—-website.)

11. Move manually added images to website
* Working directory: ~/earth-analytics—lessons

» If images were added to the website (see #6), this step reads in and displays any changed images present
in changed_image_files.txt.

1. Checks whether a matching directory containing the image already exists on
eds-lessons-website and if not makes it.

2. Copies the image to the matching directory on eds-lessons-website.

2.2. CircleCl Pipeline 5

autobuild-lessons, Release beta

This ensures that the manually-added images will also get pushed to eds—-1lessons-website in sync
with their addition to earth—-analytics—-lessons.

12. Execute Jupyter notebooks and export to md
* Working directory: earth-analytics-lessons

» Executes all changed Python notebooks (. 1pynb, read in from changed_notebooks . txt) using the
script scripts/generate_posts.py, which renders each notebook to a markdown post.

» Notebooks that had problems rendering are recored in the temporary log file nb_errors.txt
13. Knit .Rmd to .md
* Working directory: earth-analytics-lessons

* Executes all changed R notebooks (. rmd, read in from changed_notebooks.txt) using the script
scripts/knit_lessons.R, which renders each notebook to a markdown post using knitr.

* Notebooks that had problems rendering are recored in the temporary log file nb_errors.txt
14. Generate .gitignore to bypass posts with errors
* Working directory eds-lessons-website

« If there were any problem notebooks (either R or Python) recorded in nb_errors. txt, this step makes
a temporary .gitignore for the push to the remote eds-lessons-website repo

— Any notebooks that could not render properly to markdown will be skipped over in the push (while
those that were successful are pushed).

* A reference to the . gitignore itself must also be added to the . gitignore so that it remains tem-
porary and is also not pushed to the remote (which would cause the problem posts to be ignored with
successive commits, even after they are fixed!)

15. Trigger eds-lessons-website push deployment
» Working directory: eds-lessons-website

* This step will only push a commit when one or more notebooks was successfully rendered to a post. (In
other words, if all notebooks failed to render successfully, no changes will be pushed).

¢ Changes will also (in rare cases) be pushed if updates were made to images that need to permanently live
inearth-analytics—-lessons (i.e. blog post footers).

* If there are changes to push, the commit message from earth-analytics—-lessons is fetched and
passed for the changes that are staged.

¢ Then the changes are pushed to the branch checked out for eds—1lessons—-website at the beginning
of the build.

a. Display problem notebooks and trigger build fail as needed
— This step has to be nested in the deploy step because it is the last part of the job that will run.

— We need to ensure that any posts that were rendered successfully get pushed to
eds-lessons-website, so we can’t trigger the build fail any sooner.

Weekly Build (weekly)

This workflow builds ALL posts automatically, according to a cron schedule. It does not push any content to
eds-lessons-website, rather it only tests generating the posts and flags the ones with errors.

1. Check conda environment

6 Chapter 2. EDS-Lessons Final Build Documentation

autobuild-lessons, Release beta

* Lists all packages (R, Python, and Linux) installed in the conda environment and package versions.
 This is identical to the step run at the start of the build job.
2. Clone eds-lessons-website
* Working directory: root
e See xx.

e The key difference is that this only clones master because the changes are never pushed. The
eds-lessons-website directory just needs to be in place so that the posts are written to the cor-
rect locations as they are rendered.

3. Execute all rmd files with knitr
e Working directory: earth-analytics—-lessons
» Thisstepuses scripts/knit_lessons.Rtotestrendering all . rmd files to . md postsusing knitr.
* See here for help with passing flags (i.e., “rebuild all”’) to scripts/knit_lessons.R
4. Execute all notebooks with papermill
» Working directory: earth-analytics-lessons
* This step uses scripts/generate_posts.py to test rendering all . ipynb files to . md posts.
* See here for help with passing flags (i.e., “rebuild all”) to scripts/generate_posts.py
5. Display problem notebooks and trigger build fail as needed
e See 15. Trigger eds-lessons-website push deployment.

* This is not nested in the deploy stage for the weekly build. Since nothing gets pushed, the output here just
shows which notebooks are currently breaking.

2.3 Scripts and Utilities (scripts)

Scripts and utilities for rendering notebooks, fetching data, etc. are located in ~/earth—-analytics—lessons/
scripts.

2.3.1 CircleCl Build

parse_commit.py
Parse commit and separate out into different file types. Grabs the latest commit and separates out committed file via
file type. It outputs three temporary log files during the build:

* Changed Jupyter notebooks (. ipynb) files in changed_notebooks.txt.

* Changed RMarkdown notebooks (. rmd) in changed_rmd_files.txt.

* Changed images (. jpg/. jpeg/.gif/.png)in changed_image_files.txt.

parse_deleted.py

Parse deleted files and separate out into different file types. This is currently kept separate from parse_commit .py
because it handles the file types somewhat differently. We could think about merging these scripts down the road.

2.3. Scripts and Utilities (scripts) 7

https://hackmd.io/psb27zRdTHqJfHtNG8kRXw?view#R-Lessons2
https://hackmd.io/psb27zRdTHqJfHtNG8kRXw?view#Python-lessons
https://github.com/earthlab/earth-analytics-lessons/blob/master/scripts/parse_commit.py
https://github.com/earthlab/earth-analytics-lessons/blob/master/scripts/parse_commit.py

autobuild-lessons, Release beta

* The key difference is that notebooks (. ipynb and .rmd) are written to the same logfile here, rather than
separate ones. This is because we

ignore—-dirs.txt

Notebooks in any directories listed in this text file (one directory per line) will not be rebuilt. This is useful when
rebuilding many directories at once (i.e., a full course’s worth of lessons, or the Weekly job).

2.3.2 Python Lessons

generate_posts.py

Build .ipynb file to .md file.
* Flags

— none In the default case, if no flags are given, knit_lessons.R will just knit whatever files are passed
after it is called with Rscript.

Usage

python scripts/generate_posts.py courses/earth-analytics-python/02-intro-to-
—lidar—-and-raster/2018-02-05-intro-lidar-raster—-landing-page.ipynb

- all
Rebuilds every . ipynb file from all directories not ignored.

Usage

python scripts/generate_posts.py all

—dirdirldir2...
Rebuilds a list of directories given after the dir flag.

Usage

python scripts/generate_posts.py dir courses/earth-analytics-python/02-intro-—
—to-lidar—-and-raster

2.3.3 R Lessons

knit_ lessons.R

Build/knit .Rmd file to .md file
* Flags

— none In the default case, if no flags are given, knit_lessons.R will just knit whatever files are passed
after it is called with Rscript.

Usage

Rscript scripts/knit_lessons.R courses/earth-analytics-r/02-time-series-data/
—2017-01-01-week-02-time-series—data.Rmd

8 Chapter 2. EDS-Lessons Final Build Documentation

https://github.com/earthlab/earth-analytics-lessons/blob/master/scripts/generate_posts.py
https://github.com/earthlab/earth-analytics-lessons/blob/master/scripts/knit_lessons_blogs_workshops.R

autobuild-lessons, Release beta

- all
Rebuilds every . rmd file from all directories not ignored.

Usage

Rscript scripts/knit_lessons.R all

—dirdirldir2...
Rebuilds a list of directories given after the dir flag.

Usage

Rscript scripts/knit_lessons.R dir courses/earth-analytics-r/02-time-series-—
—data

twitter_auth.R
This script is used to read Twitter credentials into the R knit environment to authenticate the Twitter API for Week 13
R lessons. It is called from a few of the Week 13 lessons but never needs to be called directly from the build.

This script calls an .RDS file that is encrypted in the earth-analytics-lessons repo. It reads the RDS file in and unen-
crypts it. We are using the earthdatascience twitter handle for the app attached with all twitter lessons.

leah has the encryption code cyphr is used for the encryption

2.3.4 Downloading Data

get_data_rmd.R

Download data and restructure paths for .Rmd files. This is an external script that downloads the data needed for
the .Rmd files and restructures the paths so that they are referenced correctly in the script and things run. This relies
heavily on a lookup table for managing data downloads.

url_codes_by_week.csv
A lookup table is used by knit_lessons.R to manage data downloads for each R lesson. It consists of several
columns:

* week

The topic names for each week of the EDS R course. These are analogous to the topic names provided for each
lesson in the python course. Right now, the names simply match the subdirectories in ~/eds—lessons—dev/
courses/earth-analytics-r.

e dirname

The names of the subdirectories in ~/earth-analytics that stores each week’s data. If left blank, the target
file will be stored in the root folder of ~/earth-analytics rather than in a subdirectory.

e url

The URLSs for each file download.

2.3. Scripts and Utilities (scripts) 9

https://github.com/earthlab/earth-analytics-lessons/blob/master/scripts/get_data_rmd.R
https://hackmd.io/psb27zRdTHqJfHtNG8kRXw?both#url_codes_by_weekcsv
https://github.com/earthlab/eds-lessons-dev/blob/master/scripts/url_codes_by_week.csv

autobuild-lessons, Release beta

e file

The target filename. If left blank, the downloaded file is simply named with the value in the dirname column.
This is the default behavior, since most of the data downloads are . z1ip files that contain the bulk of files needed
to build a week’s lessons and serve as the main directory for that week’s data once extracted.

However, for rows where the £1i1le column contains a value, the downloaded file is named for that value instead.
This is primarily used for supplemental data downloads that are extracted or moved into a week’s directory after
the main data download has taken place.

s ext

The target file extension. If this is a . z1ip file, it is extracted to the directory specified by dirname. Other file
types are downloaded to the root folder, then moved to the target directory specified by dirname.

Special considerations
¢ Download order matters!

This file assumes that the main lesson data will always be downloaded/extracted first so that the subdirectory
represented by dirname exists before any further file downloads take place. As such, the first row for a week
of lessons should always represent the main lesson zip file, with any successive rows representing supplemental
files (see Weeks 8, 13).

¢ Multiple lesson data downloads per week

In some cases (i.e., for the Week 7 lessons), a previous week’s data might be needed in addition to the files
specific to that week. This is handled by:

— Repeating the week ID in the week column (i.e., 07-multispectral-remote-sensing).

— Providing separate dirname values to store the files that need to be read in by the lessons. For example,
since Week 7 also requires the Week 3 data, dirname is set to week—03 to handle the Week 3 download
and week—07 for the Week 7 download.

¢ Nested files

Sometimes supplementary files must be nested in the subdirectory for a given week (i.e., the Week 8 lesson
rebuilds).

In this case, the dirname value can simply be modified to represent the relative path to the files. For example,
the supplementary files for Week 8 are extracted to the nested folder week-08/landsat.

2.3.5 Deprecated

get_all_ notebooks.py

* This script had been used to fetch the names of all . ipynb and . rmd files using g1 ob, but now this is handled
by generate_posts.py.

2.3.6 Misc/Unsorted

* rmarkdown_to_ntbk.py Converts an RMardown file to a Jupyter notebook.
[name=Joe] This doesn’t appear to be used anywhere now, should it be deprecated?
* jupyter_templates

[name=Joe] Looks like these are used by knit_lessons.R to convert RMarkdown files to Jekyll-
flavored markdown. However, should confirm.

10 Chapter 2. EDS-Lessons Final Build Documentation

https://github.com/earthlab/earth-analytics-lessons/blob/rm-files-push/scripts/rmarkdown_to_ntbk.py

autobuild-lessons, Release beta

* landsat-modis—-data

-m

e test-remove-files

-7

2.4 Rebuilding Notebooks

2.4.1 Debugging

Local Debugging

Notebooks may be debugged on your local machine using RStudio (R lessons) or JupyterLab (Python lessons).

RStudio setup for debugging for R notebooks

1. Fetch the data needed to test the lesson locally can be fetched via CLI:

R --silent -e "source('scripts/get_data_rmd.R'); get_data(path = 'path_to_file")"

where 'path_to_file' is the name of an . rmd file in the target directory. For example, if we wanted to fetch
the data for local testing of the 03-1idar—-raster-data notebooks, the name of the landing page courses/
earth—-analytics—-r/03-lidar-raster—-data/2017-01-01-week—-03.Rmd could be substituted in.

1. Transfer the earth-analytics folder containing the lesson data to the approrpriate directory. The data will
by default download to ~/earth-analytics. To make it accessible by the . rmd file locally, use

cp -R ~/earth-analytics ../earth-analytics

to mimic the directory structure of the CircleCI build.

1. Open a new RStudio session and set the project working directory to wherever
earth—-analytics—-lessons is stored on your machine.

2. Adjust the global environment options to start RStudio sessions in the root directory of
earth-analytics-lessons.

a. Navigate to Tools -> Global Options -> RMarkdown

b. In the Evaluate chunks in directory menu, select Project so that RStudio opens by default
in the root folder of earth-analytics—lessons, NOT the directory containing the notebook (the default
behavior).

3. Add a temporary code chunk (without comments) to change the root directory to ~/earth—analytics
which contains the data folder:

$ ()
knitr::opts_knitS$set (root.dir = file.path(dirname (getwd()), 'earth-analytics'))
PR

[name=Joe] YMMYV here, since there are known issues with directory management when working
with RMarkdown in RStudio. When I tested this locally (RStudio v1.1.463 for OSX), I could not get
it to work, but in other instances this did the trick.

Note that these instructions are specific to R lessons. There are a couple of key differences for blog posts:

2.4. Rebuilding Notebooks 11

https://github.com/rstudio/rmarkdown/issues/1077

autobuild-lessons, Release beta

1. Data does not need to be downloaded into an earth-analytics directory.

2. The root directory does not need to be changed. It should suffice to set the global RMarkdown
options so Evaluate chunks in directory:Project as above, since blog posts knit in ~/
earth-analytics-lessonsratherthan ~/earth-analytics (see scripts/knit_lessons.R).

Debugging Python notebooks with JupyterLab / Jupyter Notebook

* Jupyter notebooks (. ipynb) can be run as-is without additional setup, since they are set up to fetch lesson data
using earthpy.

o If there are any notebooks with missing data, the landing page can be run first to fetch it.

[name=Joe] Leah, I know this was the case previously when I was testing rebuilds of the notebooks
(i.e., I remember Week 2 lidar-intro/2018-02-05-1idar03-chm-dtm-dsm.ipynb
used to have this problem). However, it looks like the data downloads are now in place through-
out the notebooks? If this is the case, just delete this bullet.

Remote Debugging

Remote debugging refers to debugging performed on the CircleCI build.

Interactive debugging via SSH

Debugging can be performed interactively via CLI, using SSH to acess a build after it is run. This can be handy for
checking the content of intermediate files generated within the build, whether files updated as expected, etc.

You will need a local RSA key to access the build via SSH. See Authenticating SSH for instuctions on setting up an
RSA key on your machine.

On the status page for your CircleCI job, select the drop-down menu next to the button at the upper-right that says
RebuildandselectRerun job with SSH. The job will rerun without deploying changes and when finished will
instead list a remote address where the job can be accessed. In the terminal, enter the command

ssh —p XXXXX XX.XXX.XXX.XX

using the values given at the end of the CircleCI build after —p. These represent the unique ID and address of the
remote CircleClI job, respectively. Answer yes to the prompt about the remote RSA key.

Once you are finished debugging, leave the job with the command exit. The job will remain active for another 10
minutes, then time out. Note that you can SSH into a job more than once, but it will not have the same ID and address
as last time.

Debugging an R Lesson knit job

It is not possible to interactively debug an . rmd as it is knitting. However, variables in the notebook may be viewed
from the knit progress report once the build completes by inserting this code chunk (uncommented):

' {r message = F}

message (print(...))

PN

where . .. is some variable or value you are interested in viewing from the knit job. The nested print function

should coerce whatever data type the target variable/value is to a string that can be output by message.

12 Chapter 2. EDS-Lessons Final Build Documentation

https://hackmd.io/psb27zRdTHqJfHtNG8kRXw?view#Authenticating-SSH

autobuild-lessons, Release beta

2.5 Rebuilding specific course directories

IMPORTANT: Be careful when rerunning an entire directory. This works well as a one-time effort when a dir needs to
be rebuilt. However because the website repo will already have commits in it on this branch, it could lead to git issues
in the build.

*Also be sure to run a force build AFTER the website repo has been cloned. Otherwise things will fail because the
scripts write to that website repo and create directories. if they write BEFORE it’s cloned then it’s not a git repo and
can’t clone. *

Ideally, a force build of a directory should be run on a fresh branch to avoid merge conflicts.

Both scripts support the a1l flag which will build all lessons.

2.5.1 R Lessons

Call scripts/knit_lessons.R with the first argument dir, which is a flag to rebuild a directory, followed by
the relative paths to any directories you wish to rebuild.

Running via command line (SSH)

Single directory

Rscript scripts/knit_lessons.R dir courses/earth-analytics-r/08-multispectral-remote-
—~sensing-fire

Multiple directories

Rscript scripts/knit_lessons.R dir courses/earth-analytics-r/08-multispectral-remote-
—»sensing-fire courses/earth-analytics-r/l13-programmatic-data-access

Running in CircleCl Pipeline

Insert a temporary build step anywhere affer eds-lessons-website is cloned and before Generate
.gitignore to bypass posts with errors that contains Rscript scripts/knit_lessons.R
dir...,for example:

- run:
name: Test directory rebuild
working_directory: ~/earth-analytics-lessons
command: |

Rscript scripts/knit_lessons.R dir courses/earth-analytics-r/08-multispectral-—
—remote-sensing-fire courses/earth-analytics-r/l13-programmatic-data—-access

2.5.2 Python lessons

Rebuilds of Python (. ipynb) lessons and posts work in much the same way as the R lessons but rely on the script
scripts/generate_posts.py rather than scripts/knit_lessons.R.

2.5. Rebuilding specific course directories 13

autobuild-lessons, Release beta

Running via command line (SSH)

Single directory

python scripts/generate_posts.py dir courses/earth-analytics-python/02-intro-to-lidar-—
—and-raster

Multiple directories

python scripts/generate_posts.py dir courses/earth-analytics-python/02-intro-to-lidar-
—and-raster courses/earth-analytics-python/03-intro-to-python-and-time-series-data

Running in CircleCl Pipeline

- run:
name: Test directory rebuild
working_directory: ~/eds-lessons-dev
command: |

python scripts/generate_posts.py dir courses/earth-analytics-python/02-intro-to-
—lidar—and-raster courses/earth-analytics-python/03-intro-to-python-and-time-series-—
—data

2.6 Build Secrets

Two kinds of build secrets exist:

1. Secret variables used in the CircleCI build are stored under Settings/earthlab/
earth-analytics-lessons.

2. Encrypted files that store build secrets live in the earth-analytics-1lessons repo in the keys directory.

2.6.1 Github API tokens

¢ Variables:
— EDS_LESSONS_GITHUB_TOKEN_EL

+ This is the GitHub API token that enables parsing commits and pushing/pulling changes from the
CircleCI build.

+ Instructions to create the token can be found here.

[name=Joe] Verify that this is correct! I didn’t generate the initial set, but this looks like what
is needed.

— EDS_LESSONS_GITHUB_TOKEN (deprecated)
% This is the OLD token and can be deleted.

14 Chapter 2. EDS-Lessons Final Build Documentation

https://circleci.com/docs/2.0/managing-api-tokens/

autobuild-lessons, Release beta

2.6.2 Twitter keys

Twitter keys are used in the R and Python Earth Analytics lessons on programmatic data access to illustrate accessing
the Twitter API. There is a google doc that stores the login credentials for our Twitter app if they ever get lost.

R Lessons

For R Lessons, the Twitter credentials are stored in an encrypted file on the build (in keys).
¢ Variables:
— rtweet_pass

+ This is the passphrase used to decrypt the . rds file containing the full credentials. It is used by
scripts/twitter_auth.R.

Leah has a hard copy of the passphrase if needed, as well as a copy of the script to generate the
encrypted . rds file locally.

* Files:
— keys/ea_twitter_secret.rds

+ This is the encrypted . rds file that stores the Twitter API credentials.

Python Lessons
Twitter credentials are stored as build environment files on the Python side, as they are called directly from lessons to
authenticate tweepy. This is accomplished with os . env, which fetches system environment variables.
¢ Variables:
— tw_access_token
* The Twitter API access token.
— tw_access_secret
+ The secret Twitter API access token.
— tw_consumer_key
% The Twitter API consumer key.
— tw_consumer_secret

+ The Twitter API consumer secret token.

Qualtrics keys

Qualtrics keys are used to authenticate the Qualtrics API for blog posts. Authentication is carried out using the
gtoolkit R package developed by Earth Lab. If these ever get lost, Leah has a local copy that can be shared
securely with KeyBase.

¢ Variables:
- qualtrics_id
+ The Qualtrics user ID.

- qualtrics_token

2.6. Build Secrets 15

autobuild-lessons, Release beta

+ The Qualtrics API token.

2.7 Building Blog Posts

2.7.1 Relative Paths For Images in Rmd

All paths for images in Rmd file need to be relative to the Rmd file as follows: images/blog/
rather than the previously used: . ./images/blog

This means that the image directory is a subdirectory of the primary working directory for the blog posts (e.g.
root_dir in build env).

Each blog post also needs a subdirectory under images/blog/ to store generated plot images; for example:
images/blog/2019-03-18-four-must-have-skills-in-earth-data-science/

2.7.2 Plot Footer Generation

The plot footer is generated in the build from three images in images/blog/:
1. earth-lab-logo-white.png: latest Earth Lab logo with white font
2. plot-footer—-twitter.png: latest Earth Lab Twitter handle in all white
3. black-banner.png: solid black banner for background of footer

The plot footer generation is completed in four steps in the Rmd file:

1. footer is generated with magick package using the three files listed above:

earthlab_orig <- image_read(path = "images/blog/earth-lab-logo-white.png") %>%
image_scale ("x80")

twitter_orig <- image_read(path = "images/blog/plot-footer-twitter.png") %>%
image_scale ("x70")

black_banner <- image_read(path = "images/blog/black-banner.png")

earthlab_logo <- image_composite (image_scale (black_banner, "1000x100"), earthlab_orig,
— offset = "+30+10")

twitter_logo <- image_composite (image_scale (black_banner, "1000x100"), twitter_orig,
—offset = "+540+15")

logo <- image_append (image_scale (c(earthlab_logo, twitter_logo)), stack = FALSE)

[

1. code executed to generate and save a plot image without the footer:

ggsave ("images/blog/2019-03-18-four-must-have-skills-in-earth-data-science/earth-data-
—science-skills—in-demand—-automated-workflows.png", plot_auto, height = 15, width =
—15, units = "in", device = "png")

[

1. plot image without footer is read as variable:

plot <- image_read("images/blog/2019-03-18-four-must-have-skills—in-earth-data-
—science/earth-data-science-skills-in-demand-automated-workflows.png") %$>%
image_border ("white", "15x15")

1. footer is appended to the plot image without footer; the appended image is then written out to replace the original
plot image file without the footer

16 Chapter 2. EDS-Lessons Final Build Documentation

autobuild-lessons, Release beta

final_plot <- image_append(image_scale (c(plot, logo), "1000"), stack = TRUE)
image_write (final_plot, "images/blog/2019-03-18-four-must-have-skills-in-earth-data-—
—science/earth-data-science-skills-in-demand-automated-workflows.png")

2.8 Authenticating SSH

CircleClI provides these instructions for authenticating SSH with your account.

You will need to set up a local RSA key before being able to enter a build. This is device-specific, so if you are working
on multiple machines, you will need to run through these steps several times.

1. Checking whether a local SSH key exists:
https://help.github.com/en/articles/error-permission-denied-publickey

2. Generating a new local SSH key if one is needed:
https://help.github.com/en/articles/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent

3. Adding the new SSH key to GitHub account:
https://help.github.com/en/articles/adding-a-new-ssh-key-to-your-github-account

Note that you will need to copy the SSH key you generated from the terminal to your clipboard. There are
different ways to do this based on your OS.

4. Finally, verify your connection to GitHub:

ssh -T git@github.com

Enter yes if prompted. Then you should see a message like:

’Hi jvtcl! You've successfully authenticated...

2.9 CIiff Notes — force rebuild specifical directories

Rebuild just the tutorials

- run:
name: Force rebuild all workshops in this pr
working_directory: ~/earth-analytics-lessons
command: |

Rscript scripts/knit_lessons.R dir workshops/
python scripts/generate_posts.py dir workshops/

2.8. Authenticating SSH 17

https://circleci.com/docs/2.0/ssh-access-jobs/
https://www.digitalocean.com/community/questions/copy-ssh-key-to-clipboard

autobuild-lessons, Release beta

18 Chapter 2. EDS-Lessons Final Build Documentation

CHAPTER 3

Future To Do List

Cleanup the knit lessons script
Twitter lesson timeout issue
Might be uneeded scripts in the repo —
— rmd —> notebook script
— cleanup deprecated folder

Add docstrings to functions

19

autobuild-lessons, Release beta

20 Chapter 3. Future To Do List

CHAPTER 4

Indices and tables

* genindex
* modindex

e search

21

	EDS-Lessons Final Build Documentation
	Future To Do List

	EDS-Lessons Final Build Documentation
	Directories
	CircleCI Pipeline
	Scripts and Utilities (scripts)
	Rebuilding Notebooks
	Rebuilding specific course directories
	Build Secrets
	Building Blog Posts
	Authenticating SSH
	Cliff Notes – force rebuild specifical directories

	Future To Do List
	Indices and tables

